Nuclear physics input for the r-process

Gabriel Martínez Pinedo

TECHNISCHE UNIVERSITÄT DARMSTADT

INT Workshop "The r-process: status and challenges" July 28 - August 1, 2014

3 Nucleosynthesis in compact-object mergers

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

Making Gold in Nature: r-process nucleosynthesis

- Beta-decay half-lives.
- Neutron capture rates.
- Fission rates and yields.

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

r-process Astrophysical sites

Core-collapse supernova

- Neutrino-winds from protoneutron stars.
- Aspherical explosions, Jets, Magnetorotational Supernova, ...
 [Winteler *et al*, ApJ **750**, L22 (2012); Mösta *et al*, arXiv:1403.1230]

Neutron star mergers

- Matter ejected (~ $0.01~M_{\odot})$ dynamically during merger.
- Electromagnetic emission from radioactive decay of r-process nuclei [KiloNova, Metzger et al (2010), Roberts et al (2011), Bauswein et al (2013)]
- What is the additional contribution from the accretion disk?

Nucleosynthesis in compact-object mergers

Role of weak interactions

Main processes:

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

Neutrino interactions determine the proton to neutron ratio.

Neutron-rich ejecta:

$$\langle E_{\bar{\nu}_e} \rangle - \langle E_{\nu_e} \rangle > 4\Delta_{np} - \left[\frac{L_{\bar{\nu}_e}}{L_{\nu_e}} - 1 \right] \left[\langle E_{\bar{\nu}_e} \rangle - 2\Delta_{np} \right]$$

- neutron-rich ejecta: r-process
- proton-rich ejecta: vp-process

We need accurate knowledge of v_e and \bar{v}_e spectra

Nucleosynthesis in supernova neutrino-driven winds 00000

Nucleosynthesis in compact-object mergers

Neutrino interactions at high densities

Most of Equations of State treat neutrons and protons as "non-interacting" (quasi)particles that move in a mean-field potential $U_{n,p}(\rho, T, Y_e)$.

$$E_n = \frac{p_n^2}{2m_n^*} + m_n^* + U_n$$

• v_e absorption opacity affected by final state electron blocking

$$\chi(E_{\nu}) \propto (E_{\nu} + \Delta m^* + \Delta U)^2 \exp\left(\frac{E_{\nu} + \Delta m^* + \Delta U - \mu_e}{kT}\right), \quad \Delta U = U_n - U_p$$

• \bar{v}_e absorption affected by energy threshold (ΔU).

$$\chi(E_{\nu}) \propto (E_{\nu} - \Delta m^* - \Delta U)^2 \quad E_{\nu} > \Delta m^* + \Delta U$$

 larger symmetry energy (larger ΔU) implies: i) the larger the energy difference between v_e and v
_e; ii) smaller electron flavor luminosities.

Nucleosynthesis in supernova neutrino-driven winds $\circ \circ \circ \circ \circ \circ \circ$

Nucleosynthesis in compact-object mergers

Constrains in the symmetry energy

- Combination nuclear physics experiments and astronomical observations (Lattimer & Lim 2013)
- Isobaric Analog States (Danielewicz & Lee 2013)

Figures from Matthias Hempel (Basel)

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

Impact on neutrino luminosities and Y_e evolution

1D Boltzmann transport radiation simulations (artificially induced explosion) for a 11.2 M_{\odot} progenitor based on the DD2 EoS (Stefan Typel and Matthias Hempel).

 Y_e is moderately neutron-rich at early times and later becomes proton-rich. GMP, Fischer, Huther, J. Phys. G **41**, 044008 (2014).

Nucleosynthesis in supernova neutrino-driven winds 000000

Nucleosynthesis in compact-object mergers

Nucleosynthesis

- Elements between Zn and Mo, including ⁹²Mo, are produced
- Mainly neutron-deficient isotopes are produced
- No elements heavier than Mo (Z = 42) are produced.

duction	

Neutron decay

The neutron-proton energy difference in the medium could be of the order of several 10s MeV. Neutron decay is an important source of low energy neutrinos.

$$n \rightleftharpoons p + e^{-} + \bar{v}_{e}$$
$$e^{+} + n \rightleftharpoons p + \bar{v}_{e}$$

This is part of the direct URCA process in neutron stars [Lattimer et al, (1991)]

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

Neutron star mergers: Short gamma-ray bursts and r-process

- Mergers are expected to eject around 0.01 M_{\odot} of very neutron rich-material ($Y_e \sim 0.01$). A similar amount of less neutron-rich material ($Y_e \sim 0.1-0.2$) is expected from the accretion disk.
- They are also promising sources of gravitational waves.
- Observational signatures of the r-process?

Neutron-star mergers: Astrophysically robust

Korobkin, Rosswog, Arcones, & Winteler, MNRAS 426, 1940 (2012)

similar results: Bauswein, Goriely, Janka, ApJ 773, 78 (2013)

Nucleosynthesis in compact-object mergers

General features r-process

Figure from Peter Möller.

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

Global mass models vs experiment

Similar behaviour for all mass models.

Problems in reproducing masses in transitional regions.

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

General features evolution in mergers

- r-process stars once electron fermi energy drops below ~ 10 MeV to allow for beta-decays ($\rho \sim 10^{11} \text{ g cm}^{-3}$).
- Important role of nuclear energy production.
- Increases temperature to values that allow for an $(n, \gamma) \rightleftharpoons (\gamma, n)$ equilibrium.
- r-process operates at moderate high entropies, s ~ 50–100 k/nuc.

Trajectories from simmulation A. Bauswein and H.-T. Janka.

Final abundances different mass models

neutron captures computed consistently for each mass model.

J. Mendoza-Temis, G. Martinez-Pinedo, K. Langanke, A. Bauswein, H.-Th. Janka, in preparation.

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

Temporal evolution (selected phases)

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

Role of $N \sim 90$ (Telurium isotopes)

Hakala et al, PRL **109**, 032501 (2012) Van Schelt, et al, PRC **85**, 045805 (2012)

Nucleosynthesis in supernova neutrino-driven winds

Nucleosynthesis in compact-object mergers

Neutron Separation energies Cd isotopes

FRDM mass model predicts rather low neutron separation energies approaching $N \sim 90$ for $Z \sim 50$.

Nucleosynthesis in compact-object mergers

Odd-even effects (Te isotopes)

Nucleosynthesis in compact-object mergers

The role of $N \sim 130$

Both FRDM and HFB models predict a sudden drop in neutron separation energies approaching $N \sim 130$ for $Z \sim 70$.